论文标题

部分可观测时空混沌系统的无模型预测

Coloring ($P_5$, kite)-free graphs

论文作者

Huang, Shenwei, Ju, Yiao, Karthick, T.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $P_n$ and $K_n$ denote the induced path and complete graph on $n$ vertices, respectively. The {\em kite} is the graph obtained from a $P_4$ by adding a vertex and making it adjacent to all vertices in the $P_4$ except one vertex with degree 1. A graph is ($P_5$, kite)-free if it has no induced subgraph isomorphic to a $P_5$ or a kite. For a graph $G$, the chromatic number of $G$ (denoted by $χ(G)$) is the minimum number of colors needed to color the vertices of $G$ such that no two adjacent vertices receive the same color, and the clique number of $G$ is the size of a largest clique in $G$. Here, we are interested in the class of ($P_5$, kite)-free graphs with small clique number. It is known that every ($P_5$,~kite, $K_3$)-free graph $G$ satisfies $χ(G)\leq 3$, every ($P_5$,~kite, $K_4$)-free graph $G$ satisfies $χ(G)\leq 4$, and that every ($P_5$,~kite, $K_5$)-free graph $G$ satisfies $χ(G)\leq 6$. In this paper, we showed the following: $\bullet$ Every ($P_5$, kite, $K_6$)-free graph $G$ satisfies $χ(G)\leq 7$. $\bullet$ Every ($P_5$, kite, $K_7$)-free graph $G$ satisfies $χ(G)\leq 9$. We also give examples to show that the above bounds are tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源