论文标题

部分可观测时空混沌系统的无模型预测

Uniform spectral gap and orthogeodesic counting for strong convergence of Kleinian groups

论文作者

Liu, Beibei, Pallete, Franco Vargas

论文摘要

我们显示了小型特征值在强大限制下对几何有限的双曲线$ n $ manifolds的融合。对于克莱恩基团的强收敛序列中的一类收敛凸集,我们使用沿极限歧管的光谱间隙和沿着强烈收敛序列的地球流动的指数混合特性,以发现渐近均匀的计数公式在孔之间的孔盖d仪数量之间的数量。特别是,这为收敛的Margulis管,基于收敛的底线的地质环和原始封闭的大地测量学之间的正直地球植物和原始的封闭地球界提供了渐近均匀的计数公式(相对于长度)。

We show convergence of small eigenvalues for geometrically finite hyperbolic $n$-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源