论文标题
想象力的自然语言理解
Imagination-Augmented Natural Language Understanding
论文作者
论文摘要
人的大脑同时整合语言和感知信息,以理解自然语言,并具有使想象力的关键能力。这种能力使我们能够构建新的抽象概念或具体对象,并且对于涉及在低资源场景中解决问题的实用知识至关重要。但是,大多数现有的自然语言理解方法(NLU)主要集中在文本信号上。他们不会模拟人类的视觉想象能力,这阻碍了模型从有限的数据样本中有效地推断和学习。因此,我们介绍了一个想象力的跨模式编码器(IACE),以从新颖的学习角度解决自然语言理解任务 - 想象力增强的跨模式理解。 IACE可以通过从强大的生成和预训练的视觉和语言模型传递的外部知识来实现视觉想象。关于胶水和赃物的广泛实验表明,IACE在视觉监督预训练的模型上取得了一致的改进。更重要的是,导致极端和正常的几次设置验证了IACE在低资源的自然语言理解环境中的有效性。
Human brains integrate linguistic and perceptual information simultaneously to understand natural language, and hold the critical ability to render imaginations. Such abilities enable us to construct new abstract concepts or concrete objects, and are essential in involving practical knowledge to solve problems in low-resource scenarios. However, most existing methods for Natural Language Understanding (NLU) are mainly focused on textual signals. They do not simulate human visual imagination ability, which hinders models from inferring and learning efficiently from limited data samples. Therefore, we introduce an Imagination-Augmented Cross-modal Encoder (iACE) to solve natural language understanding tasks from a novel learning perspective -- imagination-augmented cross-modal understanding. iACE enables visual imagination with external knowledge transferred from the powerful generative and pre-trained vision-and-language models. Extensive experiments on GLUE and SWAG show that iACE achieves consistent improvement over visually-supervised pre-trained models. More importantly, results in extreme and normal few-shot settings validate the effectiveness of iACE in low-resource natural language understanding circumstances.