论文标题

为多项式方程计算解决方案的动力节省

Power savings for counting solutions to polynomial-factorial equations

论文作者

Bui, Hung M., Pratt, Kyle, Zaharescu, Alexandru

论文摘要

令$ p $为多项式,具有整数系数和至少两个。我们证明了整数解决方案$ n \ leq n $ to $ n的上限! = P(x)$,可以在微不足道的界限上节省电力。特别是,这适用于Brocard和Ramanujan的百年历史。以前的最佳结果是解决方案的数量为$ O(n)$。该证明使用二芬太汀和帕德近似的技术。

Let $P$ be a polynomial with integer coefficients and degree at least two. We prove an upper bound on the number of integer solutions $n\leq N$ to $n! = P(x)$ which yields a power saving over the trivial bound. In particular, this applies to a century-old problem of Brocard and Ramanujan. The previous best result was that the number of solutions is $o(N)$. The proof uses techniques of Diophantine and Padé approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源