论文标题
从整数到锤子指标
Quasihomomorphisms from the integers into Hamming metrics
论文作者
论文摘要
如果$ f(x+y)$和$ f(x+y)$和$ f(x)+f(y)$之间的hamming距离最多是$ x $ c $,a函数$ f:\ mathbb {z} \ to \ mathbb {q}^n $是$ c $ - quasihomomorphism,则最多最多是$ f(x+y)$和$ f(x)+f(y)$的$ c $ c $ cu $ in \ in \ in \ in \ in \ in \ in \ in \ mathbb {z} $。我们表明,任何$ c $ - quasihomormormormormormormorming to to to to to to co $ c $ quasiihomormormormormorm toss to to to to to to co $ c $ co(c)$与实际的组同构合法性最多有一些恒定的$ c(c)$;这里$ c(c)$仅取决于$ c $,而不取决于$ n $或$ f $。这给了Kazhdan和Ziegler提出的问题的特殊情况。
A function $f: \mathbb{Z} \to \mathbb{Q}^n$ is a $c$-quasihomomorphism if the Hamming distance between $f(x+y)$ and $f(x)+f(y)$ is at most $c$ for all $x,y \in \mathbb{Z}$. We show that any $c$-quasihomomorphism has distance at most some constant $C(c)$ to an actual group homomorphism; here $C(c)$ depends only on $c$ and not on $n$ or $f$. This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.