论文标题

空中视图地理定位的多种环境自适应网络

Multiple-environment Self-adaptive Network for Aerial-view Geo-localization

论文作者

Wang, Tingyu, Zheng, Zhedong, Sun, Yaoqi, Yan, Chenggang, Yang, Yi, Chua, Tat-Seng

论文摘要

空中视图地理位置倾向于通过将无人机视图图像与地理标记的卫星视图匹配来确定未知位置。此任务主要被视为图像检索问题。该任务的基础的关键是设计一系列深层神经网络,以学习判别图像描述符。但是,现有方法在诸如雨水和雾之类的现实天气下符合大型性能下降,因为它们不考虑训练数据和多个测试环境之间的域移动。为了限制这个领域差距,我们提出了一个多种环境的自适应网络(Muse-Net),以动态调整环境变化引起的域转移。尤其是,Muse-Net采用了一个两个分支的神经网络,该神经网络包含一个多种环境风格的提取网络和一个自适应特征提取网络。顾名思义,多环境样式的提取网络是提取与环境相关的样式信息,而自适应特征提取网络则利用自适应调制模块,以动态地最大程度地减少与环境相关的样式差距。对两个广泛使用的基准(即大学1652和CVUSA)进行了广泛的实验,这表明拟议的Muse-Net在多种环境中取得了竞争成果。此外,我们观察到所提出的方法还显示出对看不见的极端天气的巨大潜力,例如混合雾,雨和雪。

Aerial-view geo-localization tends to determine an unknown position through matching the drone-view image with the geo-tagged satellite-view image. This task is mostly regarded as an image retrieval problem. The key underpinning this task is to design a series of deep neural networks to learn discriminative image descriptors. However, existing methods meet large performance drops under realistic weather, such as rain and fog, since they do not take the domain shift between the training data and multiple test environments into consideration. To minor this domain gap, we propose a Multiple-environment Self-adaptive Network (MuSe-Net) to dynamically adjust the domain shift caused by environmental changing. In particular, MuSe-Net employs a two-branch neural network containing one multiple-environment style extraction network and one self-adaptive feature extraction network. As the name implies, the multiple-environment style extraction network is to extract the environment-related style information, while the self-adaptive feature extraction network utilizes an adaptive modulation module to dynamically minimize the environment-related style gap. Extensive experiments on two widely-used benchmarks, i.e., University-1652 and CVUSA, demonstrate that the proposed MuSe-Net achieves a competitive result for geo-localization in multiple environments. Furthermore, we observe that the proposed method also shows great potential to the unseen extreme weather, such as mixing the fog, rain and snow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源