论文标题
在强烈双曲空间上的分组漂移的连续性
Continuity of the drift in groups acting on strongly hyperbolic spaces
论文作者
论文摘要
雪崩原理在其原始环境中,加上较大的偏差产生了一种系统的方式来证明Lyapunov指数的连续性。在本文中,我们在双曲空间的背景下介绍了雪崩原理的几何版本,该原理将扩展这些技术的用法以研究此类空间的漂移。该连续性标准不仅适用于漂移,还适用于过程本身的极限点。我们将此抽象的结果应用于强烈双曲空间中的马尔可夫过程的漂移连续性。
The Avalanche principle, in its original setting, together with large deviations yields a systematic way of proving the continuity of the Lyapunov exponent. In this text we present a geometric version of the Avalanche Principle in the context of hyperbolic spaces, which will extend the usage of these techniques to study the drift in such spaces. This continuity criteria applies not only to the drift but also to the limit point of the process itself. We apply this abstract result to derive continuity of the drift for Markov processes in strongly hyperbolic spaces.