论文标题

关于平滑解决方案的爆炸机制,具有大量初始数据的严格双曲线系统

On the blowup mechanism of smooth solutions to 1D quasilinear strictly hyperbolic systems with large initial data

论文作者

Li, Jun, Xu, Gang, Yin, Huicheng

论文摘要

对于第一阶1d $ n \ times n $ quasilIrinear严格双曲系统$ \ partial_tu+f(u)\ partial_xu = 0 $ with $ u(x,0)= \ varepsilon u_0(x)$ C_0^2(\ Mathbb r)$,当至少一个$ f(u)$的特征值是真正的非线性时,众所周知,在有限的爆炸时间$ t _ {\ varepsilon} $,衍生物$ \ partial_ {对于1D标量方程或$ 2 \ times 2 $严格双曲系统(对应于$ n = 1,2 $),如果平滑的解决方案$ u $在有限的时间内爆炸,则可以很好地理解爆炸机制(即,仅发生$ \ partial_ {t,x,x} u $的爆炸)。在本文中,对于$ n \ times n $($ n \ geq 3 $),严格的双曲线系统带有一类大型初始数据,我们关注有限的爆炸时间的平滑解决方案$ u $的爆炸机制,以及$ \ partial_ {t,x} u $ ablup点附近的$ \ partial_ {我们的结果基于$ u $沿不同特征方向的有效分解,适当的调制坐标和全球加权能量估计。

For the first order 1D $n\times n$ quasilinear strictly hyperbolic system $\partial_tu+F(u)\partial_xu=0$ with $u(x, 0)=\varepsilon u_0(x)$, where $\varepsilon>0$ is small, $u_0(x)\not\equiv 0$ and $u_0(x)\in C_0^2(\mathbb R)$, when at least one eigenvalue of $F(u)$ is genuinely nonlinear, it is well-known that on the finite blowup time $T_{\varepsilon}$, the derivatives $\partial_{t,x}u$ blow up while the solution $u$ keeps to be small. For the 1D scalar equation or $2\times 2$ strictly hyperbolic system (corresponding to $n=1, 2$), if the smooth solution $u$ blows up in finite time, then the blowup mechanism can be well understood (i.e., only the blowup of $\partial_{t,x}u$ happens). In the present paper, for the $n\times n$ ($n\geq 3$) strictly hyperbolic system with a class of large initial data, we are concerned with the blowup mechanism of smooth solution $u$ on the finite blowup time and the detailed singularity behaviours of $\partial_{t,x}u$ near the blowup point. Our results are based on the efficient decomposition of $u$ along the different characteristic directions, the suitable introduction of the modulated coordinates and the global weighted energy estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源