论文标题

混合MMWAVE MIMO通信的分布式神经编码有限的反馈

Distributed Neural Precoding for Hybrid mmWave MIMO Communications with Limited Feedback

论文作者

Wei, Kai, Xu, Jindan, Xu, Wei, Wang, Ning, Chen, Dong

论文摘要

混合预编码是一种毫米波(MMWave)大量多输入多输出(MIMO)通信的成本效益技术。本文提出了一种深度学习方法,通过使用分布式神经网络进行混合模拟和数字预编码设计,反馈有限。所提出的称为DNET的分布式神经编码网络致力于实现两个目标。首先,DNET通过神经网络的分布式体系结构实现了渠道状态信息(CSI)压缩,从而可以对多个用户进行实际部署。具体而言,该神经网络由具有相同结构和参数的多个独立子网络组成,可降低训练参数的数量和网络复杂性。其次,DNET从有限的反馈中学习了从重建的CSI中的混合预编码计算。与现有的黑盒神经网络设计不同,DNET是根据混合预编码的矩阵计算的数据形式专门设计的。仿真结果表明,与传统的有限反馈预编码方法相比,所提出的DNET显着提高了近50%的性能,并具有不同的CSI压缩比。

Hybrid precoding is a cost-efficient technique for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communications. This paper proposes a deep learning approach by using a distributed neural network for hybrid analog-and-digital precoding design with limited feedback. The proposed distributed neural precoding network, called DNet, is committed to achieving two objectives. First, the DNet realizes channel state information (CSI) compression with a distributed architecture of neural networks, which enables practical deployment on multiple users. Specifically, this neural network is composed of multiple independent sub-networks with the same structure and parameters, which reduces both the number of training parameters and network complexity. Secondly, DNet learns the calculation of hybrid precoding from reconstructed CSI from limited feedback. Different from existing black-box neural network design, the DNet is specifically designed according to the data form of the matrix calculation of hybrid precoding. Simulation results show that the proposed DNet significantly improves the performance up to nearly 50% compared to traditional limited feedback precoding methods under the tests with various CSI compression ratios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源