论文标题
连续估价二进制分类器的三级工具
Trinary Tools for Continuously Valued Binary Classifiers
论文作者
论文摘要
二进制(是/否)任务的分类方法通常会产生连续的评分。机器学习从业人员必须执行模型选择,校准,离散化,绩效评估,调整和公平评估。这些任务涉及检查分类器结果,通常使用摘要统计信息和详细信息手动检查。在本文中,我们提供了一种交互式可视化方法来支持这种连续值的分类器检查任务。我们的方法解决了这些任务的三个阶段:校准,操作点选择和检查。我们增强标准视图并介绍特定于任务的视图,以便可以将它们集成到多视图协调(MVC)系统中。我们以现有的基于比较的方法为基础,将其扩展到连续分类器,即使连续值将连续值视为三元(正,不确定,负面),即使分类器最终不会最终使用3向分类。我们提供用例,证明我们的方法如何使机器学习从业人员完成关键任务。
Classification methods for binary (yes/no) tasks often produce a continuously valued score. Machine learning practitioners must perform model selection, calibration, discretization, performance assessment, tuning, and fairness assessment. Such tasks involve examining classifier results, typically using summary statistics and manual examination of details. In this paper, we provide an interactive visualization approach to support such continuously-valued classifier examination tasks. Our approach addresses the three phases of these tasks: calibration, operating point selection, and examination. We enhance standard views and introduce task-specific views so that they can be integrated into a multi-view coordination (MVC) system. We build on an existing comparison-based approach, extending it to continuous classifiers by treating the continuous values as trinary (positive, unsure, negative) even if the classifier will not ultimately use the 3-way classification. We provide use cases that demonstrate how our approach enables machine learning practitioners to accomplish key tasks.