论文标题
小区域的最佳共形预测
Optimal Conformal Prediction for Small Areas
论文作者
论文摘要
小面积数据的现有推论方法涉及在维持区域级别的频繁覆盖率和通过合并间接信息提高推论精度之间的权衡。在本文中,我们提出了一种方法,以获取一个面积级别的预测区域,以进行未来的观察,从而减轻这种权衡。所提出的方法采用了共形预测方法,其中合格度量是合并间接信息的工作模型的后验预测密度。所得的预测区域已保证不管工作模型如何,并且与其他具有相同覆盖率的区域相比,该区域的预期量最小。当在正常工作模型下构建时,我们证明这样一个预测区域是一个间隔,并构造有效的算法以获得确切的间隔。我们通过仿真研究说明了方法的性能,并应用了EPA ra rapon调查数据。
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.