论文标题

部分可观测时空混沌系统的无模型预测

On Reporting Performance and Accuracy Bugs for Deep Learning Frameworks: An Exploratory Study from GitHub

论文作者

Long, Guoming, Chen, Tao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The tremendous success of Deep Learning (DL) has significantly boosted the number of open-sourced DL frameworks hosted on GitHub. Among others, performance and accuracy bugs are critical factors that affect the reputation of these DL frameworks, therefore understanding the practice of discovering and investigating them for DL is important. In this paper, we conduct an exploratory study on the nature of reporting performance and accuracy bugs bugs for DL frameworks, aiming to improve our knowledge on this topic. Our study covers 10 most popular open-sourced DL frameworks on GitHub (e.g., TensorFlow, Keras, and PyTorch), based on which we sample 664 representative performance and accuracy bugs bug reports out of a total population of 22,522. Through systematic analysis of these samples, our key findings are: (1) low speed is the primary reason that a performance bug related report is submitted but we see no consistent pattern for accuracy related ones; (2) most of the reports are about issues encountered in the training stage; (3) only a small proportion of the reports provide insufficient information to investigate; (4) the majority of the performance and accuracy bugs bug reports (from 69% to 100%) are not related to the actual bug or regarded as unclassified; (5) around 50% of the performance and accuracy bug reports, which indeed reveal bugs, are not resolved by direct patches. Deriving from the above, we discuss a set of actionable implications to the researchers, maintainers, and report submitters on this subject. To promote open science, the labeled dataset has been made publicly available at https://tinyurl.com/4x3tap9w.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源