论文标题

部分可观测时空混沌系统的无模型预测

STRATA: Word Boundaries & Phoneme Recognition From Continuous Urdu Speech using Transfer Learning, Attention, & Data Augmentation

论文作者

Naeem, Saad, Beg, Omer

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Phoneme recognition is a largely unsolved problem in NLP, especially for low-resource languages like Urdu. The systems that try to extract the phonemes from audio speech require hand-labeled phonetic transcriptions. This requires expert linguists to annotate speech data with its relevant phonetic representation which is both an expensive and a tedious task. In this paper, we propose STRATA, a framework for supervised phoneme recognition that overcomes the data scarcity issue for low resource languages using a seq2seq neural architecture integrated with transfer learning, attention mechanism, and data augmentation. STRATA employs transfer learning to reduce the network loss in half. It uses attention mechanism for word boundaries and frame alignment detection which further reduces the network loss by 4% and is able to identify the word boundaries with 92.2% accuracy. STRATA uses various data augmentation techniques to further reduce the loss by 1.5% and is more robust towards new signals both in terms of generalization and accuracy. STRATA is able to achieve a Phoneme Error Rate of 16.5% and improves upon the state of the art by 1.1% for TIMIT dataset (English) and 11.5% for CSaLT dataset (Urdu).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源