论文标题
部分可观测时空混沌系统的无模型预测
Degenerate r-Whitney numbers and degenerate r-Dowling polynomials via Boson operators
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Dowling showed that the Whitney numbers of the first kind and of the second kind satisfy Stirling number-like relations. Recently, Kim-Kim introduced the degenerate r-Whitney numbers of the first kind and of the second kind, as degenerate versions and further generalizations of the Whitney numbers of both kinds. The normal ordering of an integral power of the number operator in terms of boson operators is expressed with the help of the Stirling numbers of the second kind. In this paper, it is noted that the normal ordering of a certain quantity involving the number operator is expressed in terms of the degenerate r-Whitney numbers of the second kind. We derive some properties, recurrence relations, orthogonality relations and several identities on those numbers from such normal ordering. In addition, we consider the degenerate r-Dowling polynomials as a natural extension of the degenerate r-Whitney numbers of the second kind and investigate their properties.