论文标题

部分可观测时空混沌系统的无模型预测

Magnetic properties of triangular lattice antiferromagnets Ba3RB9O18 (R = Yb, Er)

论文作者

Khatua, J., Pregelj, M., Elghandour, A., Jaglicic, Z., Klingeler, R., Zorko, A., Khuntia, P.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Frustration, spin correlations and interplay between competing degrees of freedom are some of the key ingredients that underlie exotic states with fractional excitations in quantum materials. Rare-earth based two dimensional magnetic lattice wherein crystal electric field, spin-orbit coupling, anisotropy and electron correlation between rare-earth moments offer a new paradigm in this context. Herein, we present crystal structure, magnetic susceptibility and specific heat accompanied by crystal electric field calculations on the polycrystalline sample of Ba3RB9O18 (R = Yb, Er) in which R3+ ions form a perfect triangular lattice without anti-site disorder. The localized R3+ spins show neither long-range order nor spin-glass state down to 1.9 K in Ba3RB9O18. Magnetization data reveal a pseudospin Jeff = 1/2 ( Yb3+) in the Kramers doublet state and a weak antiferromagnetic interaction between Jeff = 1/2 moments in the Yb variant. On the other hand, the effective moment μeff = 8.8 μB was obtained from the Curie-Weiss fit of the low-temperature susceptibility data of Er variant suggests the admixture of higher crystal electric field states with the ground state. The Curie-Weiss fit of low-temperature susceptibility data for Er system unveils the presence of a relatively strong antiferromagnetic interaction between Er3+ moments compared to its Yb3+ analog. Ba3ErB9O18 does not show long-range magnetic ordering down to 500 mK. Furthermore, our crystal electric field calculations based on magnetization data of Ba3ErB9O18 suggest the presence of a small gap between the ground and first excited Kramers doublets. The broad maximum around 4 K in magnetic specific heat in zero-field is attributed to the thermal population of the first CEF excited state in Ba3ErB9O18, which is consistent with our CEF calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源