论文标题
部分可观测时空混沌系统的无模型预测
Unique electronic state in ferromagnetic semiconductor FeCl$_{2}$ monolayer
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Two-dimensional (2D) van der Waals (vdW) magnetic materials could be an ideal platform for ultracompact spintronic applications. Among them, FeCl$_{2}$ monolayer in the triangular lattice is subject to a strong debate. Thus, we critically examine its spin-orbital state, electronic structure, and magnetic properties, using a set of delicate first-principles calculations, crystal field level analyses, and Monte Carlo simulations. Our work reveals that FeCl$_{2}$ monolayer is a ferromagnetic (FM) semiconductor in which the electron correlation of the narrow Fe $3d$ bands determines the band gap of about 1.2 eV. Note that only when the spin-orbit coupling (SOC) is properly handled, the unique $d$$^{5\uparrow}$$l$$^\downarrow_{z+}$ electronic ground state is achieved. Then, both the orbital and spin contributions (0.59 $μ_{\rm B}$ plus 3.56 $μ_{\rm B}$) to the total magnetic moment well account for, for the first time, the experimental perpendicular moment of 4.3 $μ_{\rm B}$/Fe. Moreover, we find that a compressive strain further stabilizes the $d$$^{5\uparrow}$$l$$^\downarrow_{z+}$ ground state, and that the enhanced magnetic anisotropy and exchange coupling would boost the Curie temperature ($T_{\rm C}$) from 25 K for the pristine FeCl$_{2}$ monolayer to 69-102 K under 3$\%$-5$\%$ compressive strain. Therefore, FeCl$_{2}$ monolayer is indeed an appealing 2D FM semiconductor.