论文标题

部分可观测时空混沌系统的无模型预测

Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks

论文作者

Wang, Yizhong, Mishra, Swaroop, Alipoormolabashi, Pegah, Kordi, Yeganeh, Mirzaei, Amirreza, Arunkumar, Anjana, Ashok, Arjun, Dhanasekaran, Arut Selvan, Naik, Atharva, Stap, David, Pathak, Eshaan, Karamanolakis, Giannis, Lai, Haizhi Gary, Purohit, Ishan, Mondal, Ishani, Anderson, Jacob, Kuznia, Kirby, Doshi, Krima, Patel, Maitreya, Pal, Kuntal Kumar, Moradshahi, Mehrad, Parmar, Mihir, Purohit, Mirali, Varshney, Neeraj, Kaza, Phani Rohitha, Verma, Pulkit, Puri, Ravsehaj Singh, Karia, Rushang, Sampat, Shailaja Keyur, Doshi, Savan, Mishra, Siddhartha, Reddy, Sujan, Patro, Sumanta, Dixit, Tanay, Shen, Xudong, Baral, Chitta, Choi, Yejin, Smith, Noah A., Hajishirzi, Hannaneh, Khashabi, Daniel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions -- training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones. Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源