论文标题
部分可观测时空混沌系统的无模型预测
Safe Self-Refinement for Transformer-based Domain Adaptation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Unsupervised Domain Adaptation (UDA) aims to leverage a label-rich source domain to solve tasks on a related unlabeled target domain. It is a challenging problem especially when a large domain gap lies between the source and target domains. In this paper we propose a novel solution named SSRT (Safe Self-Refinement for Transformer-based domain adaptation), which brings improvement from two aspects. First, encouraged by the success of vision transformers in various vision tasks, we arm SSRT with a transformer backbone. We find that the combination of vision transformer with simple adversarial adaptation surpasses best reported Convolutional Neural Network (CNN)-based results on the challenging DomainNet benchmark, showing its strong transferable feature representation. Second, to reduce the risk of model collapse and improve the effectiveness of knowledge transfer between domains with large gaps, we propose a Safe Self-Refinement strategy. Specifically, SSRT utilizes predictions of perturbed target domain data to refine the model. Since the model capacity of vision transformer is large and predictions in such challenging tasks can be noisy, a safe training mechanism is designed to adaptively adjust learning configuration. Extensive evaluations are conducted on several widely tested UDA benchmarks and SSRT achieves consistently the best performances, including 85.43% on Office-Home, 88.76% on VisDA-2017 and 45.2% on DomainNet.