论文标题
通过钙钛矿太阳能电池中的可调表面场减少重组
Reduced Recombination via Tunable Surface Fields in Perovskite Solar Cells
论文作者
论文摘要
通过钝化或地表现场工程减少半导体表面上的能量损失的能力已成为制造有效光伏(PV)和光电设备的重要步骤。同样,具有准2D异质结构的新兴卤化物钙钛矿对实现PV功率转化效率(PCES)> 22%> 22%,并且使单个结的PV设备达到25.7%,但对这些处理方式的基本了解仍然缺乏一般缺乏的基本了解。由于目前不存在具体选择和设计规则,因此已经建立了一种瓶颈,以最大程度地提高有益的改进。在这里,我们发现了在钙钛矿PV设备中发现的一种新型的可调节钝化策略和机制,该设备是第一个达到> 25%PCE里程碑的一种,该机制是通过用甲基氨基溴溴溴溴化物(HABR)处理散装的钙钛矿层来实现的。我们发现了富含碘化物的2D层的同时形成,以及通过部分卤化物交换实现的BR卤化物梯度,从缺陷的表面和晶界扩展到整体层。我们使用深度敏感的纳米级表征技术的独特组合来证明并直接看到2D层厚度,卤化物梯度和带结构的可调性。我们表明,该界面的优化可以将电荷载体寿命扩展到>30μs的值,这是过去50年中直接带隙半导体(GAAS,INP,CDTE)报告的最长值。重要的是,这项工作揭示了一种全新的策略和旋钮,用于在半导体接口处进行优化和调整重组和充电运输,并且可能会在实现下一组Perovskite设备性能记录时建立新的前沿。
The ability to reduce energy loss at semiconductor surfaces through passivation or surface field engineering has become an essential step in the manufacturing of efficient photovoltaic (PV) and optoelectronic devices. Similarly, surface modification of emerging halide perovskites with quasi-2D heterostructures is now ubiquitous to achieve PV power conversion efficiencies (PCEs) > 22% and has enabled single-junction PV devices to reach 25.7%, yet a fundamental understanding to how these treatments function is still generally lacking. This has established a bottleneck for maximizing beneficial improvements as no concrete selection and design rules currently exist. Here we uncover a new type of tunable passivation strategy and mechanism found in perovskite PV devices that were the first to reach the > 25% PCE milestone, which is enabled by surface treating a bulk perovskite layer with hexylammonium bromide (HABr). We uncover the simultaneous formation of an iodide-rich 2D layer along with a Br halide gradient achieved through partial halide exchange that extends from defective surfaces and grain boundaries into the bulk layer. We demonstrate and directly visualize the tunability of both the 2D layer thickness, halide gradient, and band structure using a unique combination of depth-sensitive nanoscale characterization techniques. We show that the optimization of this interface can extend the charge carrier lifetime to values > 30 μs, which is the longest value reported for a direct bandgap semiconductor (GaAs, InP, CdTe) over the past 50 years. Importantly, this work reveals an entirely new strategy and knob for optimizing and tuning recombination and charge transport at semiconductor interfaces and will likely establish new frontiers in achieving the next set of perovskite device performance records.