论文标题

Lagrangian运动放大倍数,双稀疏光流分解

Lagrangian Motion Magnification with Double Sparse Optical Flow Decomposition

论文作者

Flotho, Philipp, Heiss, Cosmas, Steidl, Gabriele, Strauss, Daniel J.

论文摘要

微表达是很难检测到的快速且空间上的小表情。因此,运动放大技术旨在扩大视频中的细微运动,因此对于处理此类表达式似乎很有用。基本上有两种主要方法,即通过Eulerian或Lagrangian技术。虽然第一个通过直接在图像像素上进行操作会隐含地放大运动,但拉格朗日方法使用光流()技术来提取和放大像素轨迹。在本文中,我们提出了一种新颖的方法,用于局部拉格朗日运动对面部微动作的放大。我们的贡献是三倍:首先,我们通过添加从应用于CASME II视频的面部微型表达式集合的算法集获得的地面真相来微调面部深度学习方法的复发性全对场变换(RAFT)。这使我们能够以有效且足够准确的方式制作面部视频。其次,由于面部微动物在空间和时间上都是局部的,因此我们建议通过空间和时间上的稀疏组件近似野外,从而导致双重稀疏分解。第三,我们使用这种分解来放大面部特定区域的微动物,在那里我们使用图像网格的三角形分裂和对转换三角形角落的RGB载体的三角形插值引入了新的向前翘曲策略。我们通过各种示例证明了我们的方法的可行性。

Microexpressions are fast and spatially small facial expressions that are difficult to detect. Therefore motion magnification techniques, which aim at amplifying and hence revealing subtle motion in videos, appear useful for handling such expressions. There are basically two main approaches, namely via Eulerian or Lagrangian techniques. While the first one magnifies motion implicitly by operating directly on image pixels, the Lagrangian approach uses optical flow (OF) techniques to extract and magnify pixel trajectories. In this paper, we propose a novel approach for local Lagrangian motion magnification of facial micro-motions. Our contribution is three-fold: first, we fine tune the recurrent all-pairs field transforms (RAFT) for OFs deep learning approach for faces by adding ground truth obtained from the variational dense inverse search (DIS) for OF algorithm applied to the CASME II video set of facial micro expressions. This enables us to produce OFs of facial videos in an efficient and sufficiently accurate way. Second, since facial micro-motions are both local in space and time, we propose to approximate the OF field by sparse components both in space and time leading to a double sparse decomposition. Third, we use this decomposition to magnify micro-motions in specific areas of the face, where we introduce a new forward warping strategy using a triangular splitting of the image grid and barycentric interpolation of the RGB vectors at the corners of the transformed triangles. We demonstrate the feasibility of our approach by various examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源