论文标题
里曼式高空曲面的总平均曲率
Total mean curvatures of Riemannian hypersurfaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces, via Reilly's identities. As applications we derive several geometric inequalities for a convex hypersurface $Γ$ in a Cartan-Hadamard manifold $M$. In particular we show that the first mean curvature integral of a convex hypersurface $γ$ nested inside $Γ$ cannot exceed that of $Γ$, which leads to a sharp lower bound in dimension $3$ for the total first mean curvature of $Γ$ in terms of the volume it bounds in $M$. This monotonicity property is extended to all mean curvature integrals when $γ$ is parallel to $Γ$, or $M$ has constant curvature. We also characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in Cartan-Hadamard manifolds.