论文标题

Y-NET:时空镜面双编码网络,用于医疗图像分段

Y-Net: A Spatiospectral Dual-Encoder Networkfor Medical Image Segmentation

论文作者

Farshad, Azade, Yeganeh, Yousef, Gehlbach, Peter, Navab, Nassir

论文摘要

视网膜光学相干断层扫描(OCT)图像的自动分割已成为医疗应用机器学习的最新方向。我们假设层的解剖结构及其在OCT图像中的高频变化使视网膜OCT成为提取光谱域特征并将其与空间域特征相结合的合适选择。在这项工作中,我们提出了$υ$ -NET,该体系结构将频域特征与图像域结合起来,以提高OCT图像的分割性能。这项工作的结果表明,引入两个分支,一个用于光谱,一个用于空间域特征,带来了流体分割性能的显着改善,并且与著名的U-NET模型相比,允许表现出色。我们的进步是流体分割骰子得分的13%,平均骰子得分为1.9%。最后,删除光谱域中选定的频率范围证明了这些特征对流体分割优于表现的影响。

Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral-domain features and combining them with spatial domain features. In this work, we present $Υ$-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings a very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源