论文标题
在分级的经典S主要子模型上
On Graded Classical S-Primary Submodules
论文作者
论文摘要
本文的目的是介绍分级的经典S原子模型,这些子模型是分级经典的主要子模型的扩展。我们指出,如果存在$ s \ in s $,则P是R模块M的分级经典s-元模块,以至于h(r)$ in h(r)$中的$ x,y \ in H(m)$中的$ x,y(m)$,如果$ xym \ in p $,则$ xym \ in p $,则$ sxm \ in p $或$ sy^nm in p $或$ sy^nm \ in p $ in P $ in p $ in P $ for Shore Integer n。已经研究了分级经典S基本模块的几种特性和特性。
The purpose of this article is to introduce the graded classical S-primary submodules which are extensions of graded classical primary submodules. We state that P is a graded classical S-primary submodule of R-module M if there exists $s\in S$ such that $x,y \in h(R)$ and $m \in h(M)$, if $xym \in P$, then $sxm \in P$ or $sy^nm \in P$ for some positive integer n. Several properties and characteristics of graded classical S-primary submodules have been studied.