论文标题

量子相干控制耦合混沌系统中平衡的性质

Quantum coherence controls the nature of equilibration in coupled chaotic systems

论文作者

Pulikkottil, Jethin J., Lakshminarayan, Arul, Srivastava, Shashi C. L., Kieler, Maximilian F. I., Bäcker, Arnd, Tomsovic, Steven

论文摘要

一个两分系统,其子系统是完全量子混沌的,并通过可调强度的扰动相互作用是一种范式模型,用于研究孤立的量子系统如何在平衡方面放松。已经发现,在未耦合的本本基bas中,初始产物状态的量子相干性可以看作是纠缠所表现出的平衡和热化方法的资源。给出了四种不同的扰动强度制度,即超弱,弱,中级和强大的政权的结果。对于每种,考虑了三种类型的未进入状态,即相干的随机相位叠加,随机叠加和本本态产物。确定了涉及相互作用强度参数的通用时间尺度。最大相干的初始状态对任何扰动强度进行热效,尽管在超弱扰动状态下,系统的基本特征状态具有张量的乘积结构,并且完全不像热。尽管随着相互作用的消失,用于热量的时间倾向于无穷大。与广泛的线性行为相反,在这种制度中,纠缠最初的及时增长。

A bipartite system whose subsystems are fully quantum chaotic and coupled by a perturbative interaction with a tunable strength is a paradigmatic model for investigating how isolated quantum systems relax towards an equilibrium. It is found that quantum coherence of the initial product states in the uncoupled eigenbasis can be viewed as a resource for equilibration and approach to thermalization as manifested by the entanglement. Results are given for four distinct perturbation strength regimes, the ultra-weak, weak, intermediate, and strong regimes. For each, three types of initially unentangled states are considered, coherent random-phase superpositions, random superpositions, and eigenstate products. A universal time scale is identified involving the interaction strength parameter. Maximally coherent initial states thermalize for any perturbation strength in spite of the fact that in the ultra-weak perturbative regime the underlying eigenstates of the system have a tensor product structure and are not at all thermal-like; though the time taken to thermalize tends to infinity as the interaction vanishes. In contrast to the widespread linear behavior, in this regime the entanglement initially grows quadratically in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源