论文标题

半桥逆变器的混合控制法的稳定性和鲁棒性

Stability and Robustness of a Hybrid Control Law for the Half-bridge Inverter

论文作者

Colón-Reyes, Gabriel E., Stocking, Kaylene C., Callaway, Duncan S., Tomlin, Claire J.

论文摘要

混合系统结合了离散和连续状态动力学。电源电子逆变器是固有的混合系统:它们是通过离散值开关输入来控制的,这些输入确定了连续值电流和电压状态动力学的演变。 混合系统分析可能会越来越有用,因为将大量可再生能源与逆变器作为界面合并到网格中。在这项工作中,我们探讨了一种混合系统方法,用于稳定电力和电力电子系统的稳定性分析。我们提供了一个分析证明,表明将混合模型用于半桥逆变器允许衍生驱动系统状态的控制定律,使系统表示所需的正弦电压和当前参考。我们根据系统参数得出了动态系统的全局Lyapunov函数的分析表达,该系统证明了误差坐标中原点的统一,全局和渐近稳定性。此外,我们通过此Lyapunov函数证明了参数变化的鲁棒性。我们通过模拟验证这些结果。 最后,我们从经验上展示了将下垂控制与这种混合系统方法结合在一起。在低渗透网格社区中,使用开关逆变器模型将下垂控制与混合开关控制的并置与混合开关控制策略可以视为一种网格形成控制策略。

Hybrid systems combine both discrete and continuous state dynamics. Power electronic inverters are inherently hybrid systems: they are controlled via discrete-valued switching inputs which determine the evolution of the continuous-valued current and voltage state dynamics. Hybrid systems analysis could prove increasingly useful as large numbers of renewable energy sources are incorporated to the grid with inverters as their interface. In this work, we explore a hybrid systems approach for the stability analysis of power and power electronic systems. We provide an analytical proof showing that the use of a hybrid model for the half-bridge inverter allows the derivation of a control law that drives the system states to desired sinusoidal voltage and current references. We derive an analytical expression for a global Lyapunov function for the dynamical system in terms of the system parameters, which proves uniform, global, and asymptotic stability of the origin in error coordinates. Moreover, we demonstrate robustness to parameter changes through this Lyapunov function. We validate these results via simulation. Finally, we show empirically the incorporation of droop control with this hybrid systems approach. In the low-inertia grid community, the juxtaposition of droop control with the hybrid switching control can be considered a grid-forming control strategy using a switched inverter model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源