论文标题

通过贴片的对比度样式学习,用于删除Instagram滤波器

Patch-wise Contrastive Style Learning for Instagram Filter Removal

论文作者

Kınlı, Furkan, Özcan, Barış, Kıraç, Furkan

论文摘要

图像级损坏和扰动会降低CNN在不同下游视觉任务上的性能。社交媒体过滤器是现实视觉分析应用程序的各种腐败和扰动中最常见的资源之一。这些分散注意力因素的负面影响可以通过以纯粹的风格恢复原始图像来推断下游视觉任务来缓解。假设这些过滤器大大向社交媒体图像注入了一些其他样式信息,我们可以制定恢复原始版本作为反向样式转移问题的问题。我们介绍了对比度的Instagram滤波器删除网络(CIFR),该网络通过采用新型的多层贴片对比度样式学习机制来增强Instagram滤波器去除的想法。实验表明,与以前的研究相比,我们提出的策略会产生更好的定性和定量结果。此外,我们介绍了在不同设置中针对拟议体系结构的其他实验的结果。最后,我们介绍了有关本地化和分割任务的过滤和恢复图像的推理输出和定量比较,以鼓励该问题的主要动机。

Image-level corruptions and perturbations degrade the performance of CNNs on different downstream vision tasks. Social media filters are one of the most common resources of various corruptions and perturbations for real-world visual analysis applications. The negative effects of these distractive factors can be alleviated by recovering the original images with their pure style for the inference of the downstream vision tasks. Assuming these filters substantially inject a piece of additional style information to the social media images, we can formulate the problem of recovering the original versions as a reverse style transfer problem. We introduce Contrastive Instagram Filter Removal Network (CIFR), which enhances this idea for Instagram filter removal by employing a novel multi-layer patch-wise contrastive style learning mechanism. Experiments show our proposed strategy produces better qualitative and quantitative results than the previous studies. Moreover, we present the results of our additional experiments for proposed architecture within different settings. Finally, we present the inference outputs and quantitative comparison of filtered and recovered images on localization and segmentation tasks to encourage the main motivation for this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源