论文标题
用于速率约束对象检测边缘的特征压缩
Feature Compression for Rate Constrained Object Detection on the Edge
论文作者
论文摘要
计算机视觉的最新进展导致人们对在移动设备上部署视觉分析模型的兴趣增长。但是,大多数移动设备具有有限的计算能力,这使他们无法运行大规模的视觉分析神经网络。解决此问题的一种新兴方法是将这些神经网络的计算卸载到Edge服务器上计算资源的计算。有效的计算卸载需要优化多个目标之间的权衡,包括压缩数据速率,分析性能和计算速度。在这项工作中,我们考虑了一个“拆分计算”系统来卸载Yolo对象检测模型的一部分计算。我们提出了一种可学习的特征压缩方法,以通过轻量计算来压缩中间的Yolo特征。我们将特征压缩和减压模块与YOLO模型一起训练,以优化在速率约束下的对象检测精度。与在移动设备上应用标准图像压缩或学习的图像压缩并在边缘执行图像减压和YOLO的基线方法相比,所提出的系统在低至中速率范围内实现了更高的检测准确性。此外,所提出的系统仅使用CPU上的移动设备上的计算时间大大降低。
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.