论文标题
多视觉超声心动图的一级分类的早期心肌梗死检测
Early Myocardial Infarction Detection with One-Class Classification over Multi-view Echocardiography
论文作者
论文摘要
心肌梗塞(MI)是世界上死亡率和发病率的主要原因。 MI的早期治疗剂可以确保预防进一步的心肌坏死。超声心动图是可以揭示MI最早迹象的基本成像技术。但是,对于MI检测,超声心动图数据集的稀缺性是培训数据驱动分类算法的主要问题。在这项研究中,我们提出了一个框架,用于在多视觉超声心动图上早期检测MI,以利用一类分类(OCC)技术。 OCC技术仅使用该特定类别的实例来训练用于检测特定目标类的模型。我们使用HMC-QU数据集在拟议的框架中调查了单模式和多模式的单级分类技术,该数据集在总共260个超声心动图记录中,包括顶部4腔(A4C)和顶端2腔(A2C)观点。实验结果表明,多模式方法的灵敏度水平为85.23%,F1得分为80.21%。
Myocardial infarction (MI) is the leading cause of mortality and morbidity in the world. Early therapeutics of MI can ensure the prevention of further myocardial necrosis. Echocardiography is the fundamental imaging technique that can reveal the earliest sign of MI. However, the scarcity of echocardiographic datasets for the MI detection is the major issue for training data-driven classification algorithms. In this study, we propose a framework for early detection of MI over multi-view echocardiography that leverages one-class classification (OCC) techniques. The OCC techniques are used to train a model for detecting a specific target class using instances from that particular category only. We investigated the usage of uni-modal and multi-modal one-class classification techniques in the proposed framework using the HMC-QU dataset that includes apical 4-chamber (A4C) and apical 2-chamber (A2C) views in a total of 260 echocardiography recordings. Experimental results show that the multi-modal approach achieves a sensitivity level of 85.23% and F1-Score of 80.21%.