论文标题

表面相似性参数:振荡时空数据的新机器学习损失度量

Surface Similarity Parameter: A New Machine Learning Loss Metric for Oscillatory Spatio-Temporal Data

论文作者

Wedler, Mathies, Stender, Merten, Klein, Marco, Ehlers, Svenja, Hoffmann, Norbert

论文摘要

监督的机器学习方法需要在训练阶段最小化损失功能。在许多研究领域,顺序数据无处不在,通常用欧几里得距离损失函数进行处理,这些损失函数是为表格数据设计的。对于光滑的振荡数据,这些常规方法缺乏对幅度,频率和相位预测误差同时惩罚的能力,并且往往会偏向振幅误差。我们将表面相似性参数(SSP)作为一种新型损耗函数引入,对于平滑振荡序列的训练机器学习模型特别有用。我们对混沌时空动力学系统进行的广泛实验表明,SSP有益于塑造梯度,从而加速训练过程,减少最终预测误差,增加重量初始化的鲁棒性以及与使用经典损失功能相比,实施更强的正则化作用。结果表明,新型损失度量的潜力,特别是对于高度复杂和混乱的数据,例如由非线性二维Kuramoto-Sivashinsky方程以及流体分散表面重力波的线性传播所引起的数据。

Supervised machine learning approaches require the formulation of a loss functional to be minimized in the training phase. Sequential data are ubiquitous across many fields of research, and are often treated with Euclidean distance-based loss functions that were designed for tabular data. For smooth oscillatory data, those conventional approaches lack the ability to penalize amplitude, frequency and phase prediction errors at the same time, and tend to be biased towards amplitude errors. We introduce the surface similarity parameter (SSP) as a novel loss function that is especially useful for training machine learning models on smooth oscillatory sequences. Our extensive experiments on chaotic spatio-temporal dynamics systems indicate that the SSP is beneficial for shaping gradients, thereby accelerating the training process, reducing the final prediction error, increasing weight initialization robustness, and implementing a stronger regularization effect compared to using classical loss functions. The results indicate the potential of the novel loss metric particularly for highly complex and chaotic data, such as data stemming from the nonlinear two-dimensional Kuramoto-Sivashinsky equation and the linear propagation of dispersive surface gravity waves in fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源