论文标题

热力学一致的并发材料和弹性多相层次系统的结构优化

Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems

论文作者

Gangwar, Tarun, Schillinger, Dominik

论文摘要

并发材料和结构优化的概念旨在减轻多相层次层次系统中最佳微结构配置的计算发现,其宏观行为受其微观结构组成的影响,它们的微观结构组成可以从几个微米变为厘米的多个长度尺度演变。它基于将多尺度优化问题分为两个嵌套的子问题,一个在宏观(结构),另一个位于显微镜(材料)。在本文中,我们为具有弹性成分在材料尺度上的多相层次系统建立了一种新颖的材料和结构优化。利用弹性性的热机械基础,我们根据最大塑料耗散原则重新制定了材料优化问题,以便它采用弹性塑料本质定律的格式,并可以通过修改的返回映射算法有效地解决。我们将基于连续的微力学对刚度和收益标准的估计值整合到配方中,这为对材料优化问题的计算可行处理打开了门。为了证明我们框架的准确性和鲁棒性,我们用几个材料尺度定义了新的基准测试,这首先在计算上可行。我们认为,我们的配方自然扩展到在进一步依赖路径依赖性效果(例如粘塑性或多尺度断裂和损害)下进行多尺度优化。

The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their microstructure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipation principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimization under further path-dependent effects such as viscoplasticity or multiscale fracture and damage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源