论文标题

通过无锚地标本地化可解释的椎骨骨折定量

Interpretable Vertebral Fracture Quantification via Anchor-Free Landmarks Localization

论文作者

Zakharov, Alexey, Pisov, Maxim, Bukharaev, Alim, Petraikin, Alexey, Morozov, Sergey, Gombolevskiy, Victor, Belyaev, Mikhail

论文摘要

椎体压缩骨折是骨质疏松症的早期迹象。尽管这些裂缝在计算机断层扫描(CT)图像上可见,但放射线医生在临床环境中经常会错过它们。关于椎骨骨折分类方法的先前研究证明了其可靠的质量;但是,现有的方法提供了难以释放的输出,有时无法处理严重异常的病例,例如高度病理椎骨或脊柱侧弯。我们提出了一种新的两步算法,以将椎骨定位在3D CT图像中,然后检测单个椎骨并同时量化2D。我们使用简单的基于6键入点的注释方案来训练神经网络,以进行两个步骤,该方案与当前的临床建议恰好相对应。我们的算法没有排除标准,可以在单个GPU上2秒内处理3D CT,并提供可解释且可验证的输出。该方法方法方法是专家级的性能,并证明了椎骨3D定位的最新结果(平均误差为1 mm),椎骨2D检测(精度和召回率为0.99)和断裂识别(患者水平的ROC AUC最高为0.96)。我们的无锚椎骨检测网络通过实现ROC AUC 0.95,灵敏度为0.85,特异性0.9在具有许多看不见的椎骨类型的挑战性诗歌数据集上,在新领域显示出极好的普遍性。

Vertebral body compression fractures are early signs of osteoporosis. Though these fractures are visible on Computed Tomography (CT) images, they are frequently missed by radiologists in clinical settings. Prior research on automatic methods of vertebral fracture classification proves its reliable quality; however, existing methods provide hard-to-interpret outputs and sometimes fail to process cases with severe abnormalities such as highly pathological vertebrae or scoliosis. We propose a new two-step algorithm to localize the vertebral column in 3D CT images and then detect individual vertebrae and quantify fractures in 2D simultaneously. We train neural networks for both steps using a simple 6-keypoints based annotation scheme, which corresponds precisely to the current clinical recommendation. Our algorithm has no exclusion criteria, processes 3D CT in 2 seconds on a single GPU, and provides an interpretable and verifiable output. The method approaches expert-level performance and demonstrates state-of-the-art results in vertebrae 3D localization (the average error is 1 mm), vertebrae 2D detection (precision and recall are 0.99), and fracture identification (ROC AUC at the patient level is up to 0.96). Our anchor-free vertebra detection network shows excellent generalizability on a new domain by achieving ROC AUC 0.95, sensitivity 0.85, specificity 0.9 on a challenging VerSe dataset with many unseen vertebra types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源