论文标题

多模式时空图神经网络,用于改进30天全因医院再入院的预测

Multimodal spatiotemporal graph neural networks for improved prediction of 30-day all-cause hospital readmission

论文作者

Tang, Siyi, Tariq, Amara, Dunnmon, Jared, Sharma, Umesh, Elugunti, Praneetha, Rubin, Daniel, Patel, Bhavik N., Banerjee, Imon

论文摘要

预测30天再入院的措施被认为是医院的重要质量因素,因为准确的预测可以通过在出院前识别高风险患者来降低总体护理成本。虽然最近基于深度学习的研究表明,对再入院预测的有希望的实证结果,但存在几种限制可能会阻碍广泛的临床实用性,例如(a)仅考虑具有某些条件的患者,(b)现有方法没有利用数据时间性,(c)彼此认为是彼此独立的,(d)是无现实的研究,(d)通常限制了单个数据和单个数据中心。为了解决这些局限性,我们提出了一个多模式,模态无形时空图神经网络(MM-STGNN),以预测30天的全因医院再入院,以融合多模式的住院纵向数据。通过使用来自两个独立中心的纵向胸部X光片和电子健康记录训练和评估我们的方法,我们证明MM-STGNN在主数据集和外部数据集上的AUROC为0.79。此外,在主要数据集上,MM-STGNN显着优于当前的临床参考标准蕾丝+评分(AUROC = 0.61)。对于患有心脏和血管疾病的患者的子集群,我们的模型在预测30天的再入院方面也表现出色(例如,心脏病患者AUROC的3.7点提高)。最后,定性模型可解释性分析表明,尽管未明确使用患者的主要诊断来训练模型,但节点对于模型预测至关重要,直接反映了患者的主要诊断。重要的是,我们的MM-STGNN对节点的特征方式不可知,可以用来整合在各种下游资源分配任务中为患者进行分类患者的多模式数据。

Measures to predict 30-day readmission are considered an important quality factor for hospitals as accurate predictions can reduce the overall cost of care by identifying high risk patients before they are discharged. While recent deep learning-based studies have shown promising empirical results on readmission prediction, several limitations exist that may hinder widespread clinical utility, such as (a) only patients with certain conditions are considered, (b) existing approaches do not leverage data temporality, (c) individual admissions are assumed independent of each other, which is unrealistic, (d) prior studies are usually limited to single source of data and single center data. To address these limitations, we propose a multimodal, modality-agnostic spatiotemporal graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission that fuses multimodal in-patient longitudinal data. By training and evaluating our methods using longitudinal chest radiographs and electronic health records from two independent centers, we demonstrate that MM-STGNN achieves AUROC of 0.79 on both primary and external datasets. Furthermore, MM-STGNN significantly outperforms the current clinical reference standard, LACE+ score (AUROC=0.61), on the primary dataset. For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission (e.g., 3.7 point improvement in AUROC in patients with heart disease). Lastly, qualitative model interpretability analysis indicates that while patients' primary diagnoses were not explicitly used to train the model, node features crucial for model prediction directly reflect patients' primary diagnoses. Importantly, our MM-STGNN is agnostic to node feature modalities and could be utilized to integrate multimodal data for triaging patients in various downstream resource allocation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源