论文标题

部分可观测时空混沌系统的无模型预测

Rationality of meromorphic functions between real algebraic sets in the plane

论文作者

Ng, Tuen-Wai, Yao, Xiao

论文摘要

我们研究了一个可变的meromorthic函数,将平面真实代数设置$ a $映射到复杂平面中的另一个真实代数设置。通过使用Schwarz反思函数的理论,我们表明,对于某些$ a $,这些meromorthic函数必须是理性的。特别是,当$ a $是标准单位圆圈时,我们获得了Poincaré(1907),Tanaka(1962)和Alexander(1974)的合理性结果的一维类似物,价格为$ 2M-1 $ $ $ \ MATHBB {C MATHBB {C}^M $时,当

We study one variable meromorphic functions mapping a planar real algebraic set $A$ to another real algebraic set in the complex plane. By using the theory of Schwarz reflection functions, we show that for certain $A$, these meromorphic functions must be rational. In particular, when $A$ is the standard unit circle, we obtain an one dimensional analog of Poincaré(1907), Tanaka(1962) and Alexander(1974)'s rationality results for $2m-1$ dimensional sphere in $\mathbb{C}^m$ when $m\ge 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源