论文标题
几乎简单的线性图,同源性恢复和连接的Heegaard Floer同源性
Almost simple linear graphs, homology cobordism and connected Heegaard Floer homology
论文作者
论文摘要
继续我们以前的工作,我们有效地计算了两个Brieskorn领域的连接的Heegaard浮子同源物,将其视为几乎简单的线性图的边界。使用DAI,HOM,Stoffregen和Truong的浮动理论不变性,我们表明这些Brieskorn领域也会在同源性共同体组中产生无限级别的求和。我们的计算还应用了经典结的一致性和$ 0 $ 2 $ 2 $ - 结的一致性。
Continuing our previous work, we effectively compute connected Heegaard Floer homologies of two families of Brieskorn spheres realized as the boundaries of almost simple linear graphs. Using Floer theoretic invariants of Dai, Hom, Stoffregen, and Truong, we show that these Brieskorn spheres also generate infinite rank summands in the homology cobordism group. Our computations also have applications to the concordance of classical knots and $0$-concordance of $2$-knots.