论文标题
OCCAM的激光:基于闭塞的归因地图,用于LIDAR数据上的3D对象检测器
OccAM's Laser: Occlusion-based Attribution Maps for 3D Object Detectors on LiDAR Data
论文作者
论文摘要
尽管LiDar Point云中的3D对象检测在学术界和行业中已经建立了良好,但这些模型的解释性在很大程度上是未开发的领域。在本文中,我们提出了一种为检测到的对象生成归因图的方法,以便更好地了解此类模型的行为。这些地图表明每个3D点在预测特定对象中的重要性。我们的方法与黑框模型一起使用:我们不需要对体系结构的任何先验知识,也不需要访问模型的内部设备,例如参数,激活或梯度。我们有效的基于扰动的方法通过用随机生成的输入点云的子集测试模型来估算每个点的重要性。我们的子采样策略考虑了LIDAR数据的特殊特征,例如深度依赖性点密度。我们展示了对归因地图的详细评估,并证明它们是可解释且有益的。此外,我们比较了最近的3D对象检测体系结构的归因图,以提供对其决策过程的见解。
While 3D object detection in LiDAR point clouds is well-established in academia and industry, the explainability of these models is a largely unexplored field. In this paper, we propose a method to generate attribution maps for the detected objects in order to better understand the behavior of such models. These maps indicate the importance of each 3D point in predicting the specific objects. Our method works with black-box models: We do not require any prior knowledge of the architecture nor access to the model's internals, like parameters, activations or gradients. Our efficient perturbation-based approach empirically estimates the importance of each point by testing the model with randomly generated subsets of the input point cloud. Our sub-sampling strategy takes into account the special characteristics of LiDAR data, such as the depth-dependent point density. We show a detailed evaluation of the attribution maps and demonstrate that they are interpretable and highly informative. Furthermore, we compare the attribution maps of recent 3D object detection architectures to provide insights into their decision-making processes.