论文标题
星形超曲面的Bangert-Hhingston定理
A Bangert-Hingston Theorem for Starshaped Hypersurfaces
论文作者
论文摘要
让$ q $是一个封闭的多种流形,具有非平凡的第一Betti编号,该数字承认非平凡的$ s^1 $ action,而$σ\ subseteq t^*q $ a非排分星形超出表面。我们证明,$σ$上最多$ t $的几何不同的Reeb轨道的数量至少在$ t $中生长。
Let $Q$ be a closed manifold with non-trivial first Betti number that admits a non-trivial $S^1$-action, and $Σ\subseteq T^*Q$ a non-degenerate starshaped hypersurface. We prove that the number of geometrically distinct Reeb orbits of period at most $T$ on $Σ$ grows at least logarithmically in $T$.