论文标题

星形超曲面的Bangert-Hhingston定理

A Bangert-Hingston Theorem for Starshaped Hypersurfaces

论文作者

Pellegrini, Alessio

论文摘要

让$ q $是一个封闭的多种流形,具有非平凡的第一Betti编号,该数字承认非平凡的$ s^1 $ action,而$σ\ subseteq t^*q $ a非排分星形超出表面。我们证明,$σ$上最多$ t $的几何不同的Reeb轨道的数量至少在$ t $中生长。

Let $Q$ be a closed manifold with non-trivial first Betti number that admits a non-trivial $S^1$-action, and $Σ\subseteq T^*Q$ a non-degenerate starshaped hypersurface. We prove that the number of geometrically distinct Reeb orbits of period at most $T$ on $Σ$ grows at least logarithmically in $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源