论文标题

曲折束的量子共同体的收敛和分析分解

Convergence and Analytic Decomposition of Quantum Cohomology of Toric Bundles

论文作者

Koto, Yuki

论文摘要

我们证明,圆环束e \ to b comments的大型量子QH^*_ t(e)的总空间,规定大量子同胞qh^*(b)收敛。证明是基于布朗的镜子定理的曲折捆绑包。 Coates,Givental和Tseng已经观察到,E将E分裂为B的量子连接在B的副本中,假设QH^*(B)是收敛的,我们构建了E的量子D模块的分解为B的直接总和,这是对B的直接总和,这是对QH^*_ T(e)的参数分析的。特别是,我们获得了E.的均等/非等分的大量子共同体的分析分解。

We prove that the equivariant big quantum cohomology QH^*_T(E) of the total space of a toric bundle E \to B converges provided that the big quantum cohomology QH^*(B) converges. The proof is based on Brown's mirror theorem for toric bundles. It has been observed by Coates, Givental and Tseng that the quantum connection of E splits into copies of that of B. Under the assumption that QH^*(B) is convergent, we construct a decomposition of the quantum D-module of E into a direct sum of that of B, which is analytic with respect to parameters of QH^*_T(E). In particular, we obtain an analytic decomposition for the equivariant/non-equivariant big quantum cohomology of E.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源