论文标题

在主曲线恒定比率的螺旋表面上

On Helical Surfaces with a Constant Ratio of Principal Curvatures

论文作者

Liu, Yang, Pirahmad, Olimjoni, Wang, Hui, Michels, Dominik L., Pottmann, Helmut

论文摘要

我们确定三维欧几里德空间中的所有螺旋表面,该空间具有恒定比率$ a:=κ_1/κ__2$的主要曲率(CRPC表面),从而为已知旋转的旋转旋转提供了第一个显式CRPC表面。成功确定这些表面的关键要素是生成概况的适当选择。我们使用轮廓用于平行投影与螺旋轴正交。这具有一个优点:CRPC属性可以在共轭表面切线的帮助下很好地表达。出现的普通微分方程具有明确的参数解决方案,这构成了对可能形状的进一步研究和分类的基础,以及$ a> 0 $的奇异性和奇异性。

We determine all helical surfaces in three-dimensional Euclidean space which possess a constant ratio $a:=κ_1/κ_2$ of principal curvatures (CRPC surfaces), thus providing the first explicit CRPC surfaces beyond the known rotational ones. A key ingredient in the successful determination of these surfaces is the proper choice of generating profiles. We employ the contours for parallel projection orthogonal to the helical axis. This has the advantage that the CRPC property can be nicely expressed with the help of the involution of conjugate surface tangents. The arising ordinary differential equation has an explicit parametric solution, which forms the basis for a further study and classification of the possible shapes and the singularities arising for $a>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源