论文标题
部分可观测时空混沌系统的无模型预测
Analogue metric in a black bounce background
论文作者
论文摘要
嵌入有效的声学度量的常规方法是在背景平坦的Minkowski时空中进行声音运动,最近已扩展以结合更通用的弯曲背景指标,该指标可能包含一个黑洞。尽管包括声音阴影结构和准正常模式在内的这类声学范围的观察方面在文献中受到了极大的关注,但它为嵌入嵌入更通用的弯曲背景空间时间的嵌入而没有光学范围的时间留出了余地。在这里,我们提出并研究了一类新的声学指标,这些指标嵌入了黑色弹跳时空,从而提供了合适的可调系统,以了解存在或不存在声学范围的观察性效应。在表明公制可以代表声音运动的五种类型的不同有效背景,包括新型的“声虫孔 - 光学虫洞”分支,我们讨论了即使在没有任何声学范围的情况下,声音阴影的独特特征也会出现,这是由于声音孔中存在的虫洞喉咙而没有出现的。
The conventional approach of embedding an effective acoustic metric for sound motion in a background flat Minkowski space-time, has recently been extended to incorporate more general curved background metrics, which might contain a black hole. Though the observational aspects of these kinds of acoustics horizons, including the sonic shadow structure and quasi normal modes have received significant attention in the literature, it leaves room for discussions about embedding in more general classes of curved background space-times without optical horizons. Here we propose and study a new class of acoustic metrics that is embedded in a black-bounce space-time, thereby giving a suitable tuneable system to understand possible observational effects of the presence or absence of acoustic horizons. After showing that the metric can represent five types of different effective backgrounds for sound motion, including a novel "acoustic wormhole - optical wormhole" branch, we discuss how the distinctive features of sonic shadows can appear even in the absence of any acoustic horizon due to the wormhole throat present in the acoustic metric.