论文标题
Neumann Laplacian的Fucik本本特征的基础和完整性
Basisness and completeness of Fucik eigenfunctions for the Neumann Laplacian
论文作者
论文摘要
我们研究了一维neumann laplacian的fucik本征序序列的基础特性。我们表明,任何此类序列都是在$ l^2(0,π)$中完成的,并且在均值为零的函数子空间中的riesz基础。此外,我们提供了Fucik特征值的足够假设,可以保证相应的fucik eigenfunctions在$ l^2(0,π)$中形成riesz基础,并且我们明确描述了相应的生物表达系统。
We investigate the basis properties of sequences of Fucik eigenfunctions of the one-dimensional Neumann Laplacian. We show that any such sequence is complete in $L^2(0,π)$ and a Riesz basis in the subspace of functions with zero mean. Moreover, we provide sufficient assumptions on Fucik eigenvalues which guarantee that the corresponding Fucik eigenfunctions form a Riesz basis in $L^2(0,π)$ and we explicitly describe the corresponding biorthogonal system.