论文标题

部分可观测时空混沌系统的无模型预测

Hybrid Feature- and Similarity-Based Models for Joint Prediction and Interpretation

论文作者

Kueper, Jacqueline K., Rayner, Jennifer, Lizotte, Daniel J.

论文摘要

电子健康记录(EHRS)具有简单的功能,例如患者年龄,以及更复杂的数据,例如信息丰富但不容易表示为个人特征。为了更好地利用此类数据,我们开发了一种可解释的混合功能和基于相似性的模型,用于监督学习,该模型结合了特征和内核学习以预测和研究因果关系。我们通过凸优化构成混合模型,并在内核上引起稀疏性惩罚。根据所需的模型解释,可以同时或同时学习特征和内核系数。在模拟研究中,在案例研究中,混合模型表现出可比性或更好的预测性能,并且在案例研究中,通过复杂的初级卫生保健人群的EHR数据来预测孤独或社会隔离的两年风险。使用案例研究,我们还提出了基于人口级期望的偏差的高维指标编码的EHR数据的新内核,我们确定了因果解释的考虑。

Electronic health records (EHRs) include simple features like patient age together with more complex data like care history that are informative but not easily represented as individual features. To better harness such data, we developed an interpretable hybrid feature- and similarity-based model for supervised learning that combines feature and kernel learning for prediction and for investigation of causal relationships. We fit our hybrid models by convex optimization with a sparsity-inducing penalty on the kernel. Depending on the desired model interpretation, the feature and kernel coefficients can be learned sequentially or simultaneously. The hybrid models showed comparable or better predictive performance than solely feature- or similarity-based approaches in a simulation study and in a case study to predict two-year risk of loneliness or social isolation with EHR data from a complex primary health care population. Using the case study we also present new kernels for high-dimensional indicator-coded EHR data that are based on deviations from population-level expectations, and we identify considerations for causal interpretations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源