论文标题
某些功能空间的Baire属性
Baire property of some function spaces
论文作者
论文摘要
紧凑型空间$ x $称为$π$ - 单石器时代,如果对于任何过滤的连续映射$ f:x \ rightarrow k $,其中$ k $是一个可METRIZABLIXABLIXABLIZABL SPACE,则存在一个可METRIXABLIZABLIZABLIZABLIZABLIZABLIZACT SPACE $ T \ subseteq X $,例如$ f(t)= k $。如果任何$ x $的开放式密度子集的交叉点在$ x $中是密集的,则拓扑空间$ x $是baire。令$ c_p(x,y)$表示所有连续$ y $ - 值$ c(x,y)$ tychonoff space $ x $的空间,并带有尖端融合的拓扑。在本文中,我们已经证明,对于完全断开的空间$ x $,空间$ c_p(x,\ {0,1 \})$是baire的,并且只有$ c_p(x,k)$是每一个$π$ monolithic-monolithic compact Space $ k $ k $。对于tychonoff space $ x $ x $ space $ c_p(x)$是baire,并且只有$ c_p(x,l)$是每个Frechet Space $ L $的baire。我们构建了一个完全断开的Tychonoff Space $ t $,这样$ C_P(T,M)$是可分开的度量空间$ M $的Baire,并且只有当$ m $是Peano Continum。此外,$ c_p(t,[0,1])$是baire,但是$ cp(t,\ {0,1 \})$不是。
A compact space $X$ is called $π$-monolithic if for any surjective continuous mapping $f:X\rightarrow K$ where $K$ is a metrizable compact space there exists a metrizable compact space $T\subseteq X$ such that $f(T)=K$. A topological space $X$ is Baire if the intersection of any sequence of open dense subsets of $X$ is dense in $X$. Let $C_p(X,Y)$ denote the space of all continuous $Y$- valued functions $C(X,Y)$ on a Tychonoff space $X$ with the topology of pointwise convergence. In this paper we have proved that for a totally disconnected space $X$ the space $C_p(X,\{0,1\})$ is Baire if, and only if, $C_p(X,K)$ is Baire for every $π$-monolithic compact space $K$. For a Tychonoff space $X$ the space $C_p(X)$ is Baire if, and only if, $C_p(X,L)$ is Baire for each Frechet space $L$. We construct a totally disconnected Tychonoff space $T$ such that $C_p(T,M)$ is Baire for a separable metric space $M$ if, and only if, $M$ is a Peano continuum. Moreover, $C_p(T,[0,1])$ is Baire but $Cp(T,\{0,1\})$ is not.