论文标题
采矿逻辑事件模式来自预训练的语言模型
Mining Logical Event Schemas From Pre-Trained Language Models
论文作者
论文摘要
我们提出了NESL(神经剧本模式学习者),这是一个事件模式学习系统,结合了大型语言模型,Framenet解析,强大的语言逻辑表示以及一组简单的行为模式,旨在引导学习过程。我们的数据集代替了预先制作的故事,是预先训练的语言模型中的“情况样本”的连续饲料,然后将其解析为Framenet框架,映射到简单的行为模式中,并将其合并成复杂的,概括为复杂的,等级制度,以获取各种日常情况。我们表明,从语言模型中进行仔细的采样可以帮助强调情况的刻板印象,并逐渐强调无关紧要的细节,并且所产生的模式比其他系统所学的模式更全面地指定了情况。
We present NESL (the Neuro-Episodic Schema Learner), an event schema learning system that combines large language models, FrameNet parsing, a powerful logical representation of language, and a set of simple behavioral schemas meant to bootstrap the learning process. In lieu of a pre-made corpus of stories, our dataset is a continuous feed of "situation samples" from a pre-trained language model, which are then parsed into FrameNet frames, mapped into simple behavioral schemas, and combined and generalized into complex, hierarchical schemas for a variety of everyday scenarios. We show that careful sampling from the language model can help emphasize stereotypical properties of situations and de-emphasize irrelevant details, and that the resulting schemas specify situations more comprehensively than those learned by other systems.