论文标题

马尔可夫随机场的稀疏互动邻居选择通过可逆跳跃和伪托带

Sparse Interaction Neighborhood Selection for Markov Random Fields via Reversible Jump and Pseudoposteriors

论文作者

Freguglia, Victor, Garcia, Nancy Lopes

论文摘要

我们考虑了基于二维晶格的相对位置,估计马尔可夫随机场模型的相互作用邻居的问题。使用贝叶斯框架,我们提出了一种可逆的跳跃蒙特卡洛马尔可夫链算法,该算法跳过了最大范围邻域的子集,使我们能够基于模型的边缘伪型分布进行模型选择。为了显示我们提出的方法的强度,我们进行了仿真研究,并将其应用于离散纹理图像分析中的真实数据集。

We consider the problem of estimating the interacting neighborhood of a Markov Random Field model with finite support and homogeneous pairwise interactions based on relative positions of a two-dimensional lattice. Using a Bayesian framework, we propose a Reversible Jump Monte Carlo Markov Chain algorithm that jumps across subsets of a maximal range neighborhood, allowing us to perform model selection based on a marginal pseudoposterior distribution of models. To show the strength of our proposed methodology we perform a simulation study and apply it to a real dataset from a discrete texture image analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源