论文标题
顶级学位$ \ ell^p $ - 知识和建筑物的共形维度
Top degree $\ell^p$-homology and conformal dimension of buildings
论文作者
论文摘要
对于戴维斯公寓是可定向的伪行的非紧凑型有限厚度建筑,我们计算了$ p> 1 $的最高限制,以使其顶级降低的$ \ ell^p $ - 亚种是非零的。我们使用BESTVINA实现将该结果的非逐渐断言适应任何有限的厚度构建。使用类似的技术,我们将Clais获得的界限推广到某些Gromov-Hyperbolic建筑物的共形维度上。
For a non-compact finite thickness building whose Davis apartment is an orientable pseudomanifold, we compute the supremum of the set of $p>1$ such that its top dimensional reduced $\ell^p$-cohomology is nonzero. We adapt the non-vanishing assertion of this result to any finite thickness building using the Bestvina realization. Using similar techniques, we generalize bounds obtained by Clais on the conformal dimension of some Gromov-hyperbolic buildings to any such building.