论文标题
物质中中微子振荡和衰减的分析治疗
Analytic treatment of 3-flavor neutrino oscillation and decay in matter
论文作者
论文摘要
我们提出了与无形的中微子衰变的3味中微子振荡概率的紧凑分析表达式,其中已明确包括物质效应。我们考虑到有效的哈密顿量不通勤的振荡和衰减成分的可能性。这是通过采用逆面包板 - 贝克贝尔 - 霍斯多夫(BCH)扩展的技术和在3型风味框架中应用的Cayley-Hamilton定理的技术来实现的。如果只有真空质量特征态$ν_3$衰减,我们表明中微子传播的处理可以减少到一个质量尺度优势(OMSD)近似值中的有效的2型味分析。 $ p_ {μμ} $,$ p_ {ee} $,$ p_ {eμ} $和$ p_ {μE} $的振荡概率 - 与反应堆,长碱基和大气中性中性粉实验相关的相关 - 仅作为$ c $ ncem nestion compoins n eff of decy的情况,以及c的情况。矩阵不为零。因此,获得的分析结果将恒定密度重要的确切数值结果与高精度相匹配,并提供了对中微子在地球物质传播时可能影响的物理见解。我们发现,中微子衰变的效果最有可能在$ p_ {μμ} $中观察到。我们还指出,在任何长的基线中,$ p_ {μμme} $中的振荡倾斜在衰减的情况下可以显示出更高的生存概率,而不是没有衰减,并使用我们的分析近似来解释此功能。
We present compact analytic expressions for 3-flavor neutrino oscillation probabilities with invisible neutrino decay, where matter effects have been explicitly included. We take into account the possibility that the oscillation and decay components of the effective Hamiltonian do not commute. This is achieved by employing the techniques of inverse Baker-Campbell-Hausdorff (BCH) expansion and the Cayley-Hamilton theorem applied in the 3-flavor framework. If only the vacuum mass eigenstate $ν_3$ decays, we show that the treatment of neutrino propagation may be reduced to an effective 2-flavor analysis in the One Mass Scale Dominance (OMSD) approximation. The oscillation probabilities for $P_{μμ}$, $P_{ee}$, $P_{eμ}$ and $P_{μe}$ -- relevant for reactor, long baseline and atmospheric neutrino experiments -- are obtained as perturbative expansions for the case of only $ν_3$ decay, as well as for the more general scenario where all components of the decay matrix are non-zero. The analytic results thus obtained match the exact numerical results for constant density matter to a high precision and provide physical insights into possible effects of the decay of neutrinos as they propagate through Earth matter. We find that the effects of neutrino decay are most likely to be observable in $P_{μμ}$. We also point out that at any long baseline, the oscillation dips in $P_{μμ}$ can show higher survival probabilities in the case with decay than without decay, and explain this feature using our analytic approximations.