论文标题
物理信息图神经网络增强了变异非平衡最佳控制的可伸缩性
Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control
论文作者
论文摘要
当物理系统远离平衡时,其动力轨迹的统计分布会为其许多物理特性提供信息。表征动态可观察物的分布的性质,例如当前或熵的生产率,已成为非平衡统计力学中的核心问题。渐近地,对于一系列可观察到的,当动力学是马尔可夫人时,给定可观察的分布满足了一个较大的偏差原理,这意味着可以通过计算缩放的累积生成函数来长时间限制中的波动。对于复杂的,相互作用的系统,计算此函数在分析上(也不经常在数值上)无法处理,因此需要开发可靠的数值技术来进行此计算,以探测非平衡材料的特性。在这里,我们描述了一种将该任务重新制定为可以通过变化解决的最佳控制问题的算法。我们使用针对应用力的物理系统量身定制的神经网络Ansätze来解决最佳控制力。我们证明,这种方法导致在具有大量相互作用粒子的两个系统中可转移和准确的解决方案。
When a physical system is driven away from equilibrium, the statistical distribution of its dynamical trajectories informs many of its physical properties. Characterizing the nature of the distribution of dynamical observables, such as a current or entropy production rate, has become a central problem in nonequilibrium statistical mechanics. Asymptotically, for a broad class of observables, the distribution of a given observable satisfies a large deviation principle when the dynamics is Markovian, meaning that fluctuations can be characterized in the long-time limit by computing a scaled cumulant generating function. Calculating this function is not tractable analytically (nor often numerically) for complex, interacting systems, so the development of robust numerical techniques to carry out this computation is needed to probe the properties of nonequilibrium materials. Here, we describe an algorithm that recasts this task as an optimal control problem that can be solved variationally. We solve for optimal control forces using neural network ansätze that are tailored to the physical systems to which the forces are applied. We demonstrate that this approach leads to transferable and accurate solutions in two systems featuring large numbers of interacting particles.