论文标题

通过利用来自类似系统的数据来识别系统的动态

Identifying the Dynamics of a System by Leveraging Data from Similar Systems

论文作者

Xin, Lei, Ye, Lintao, Chiu, George, Sundaram, Shreyas

论文摘要

当人们可以访问来自真实系统的数据外,我们还研究了识别线性系统动力学的问题。我们使用加权的最小二乘方法,并提供有限的样本性能保证,以确定的动态质量。我们的结果表明,可以有效地使用相似系统生成的辅助数据来减少由于过程噪声而引起的估计误差,而成本是添加部分误差的成本,而误差是由于真实和辅助系统模型中固有差异所致。我们还提供数值实验来验证我们的理论结果。我们的分析可以应用于各种重要的环境。例如,如果系统动态在某个时间点发生变化(例如,由于故障的原因),那么一个人应该如何利用先前系统的数据来学习新系统的动力学?作为另一个示例,如果来自真实系统的模拟(但不完美)模型可获得大量数据,那么该数据与系统的真实数据相比应该如何?我们的分析提供了对这些问题答案的见解。

We study the problem of identifying the dynamics of a linear system when one has access to samples generated by a similar (but not identical) system, in addition to data from the true system. We use a weighted least squares approach and provide finite sample performance guarantees on the quality of the identified dynamics. Our results show that one can effectively use the auxiliary data generated by the similar system to reduce the estimation error due to the process noise, at the cost of adding a portion of error that is due to intrinsic differences in the models of the true and auxiliary systems. We also provide numerical experiments to validate our theoretical results. Our analysis can be applied to a variety of important settings. For example, if the system dynamics change at some point in time (e.g., due to a fault), how should one leverage data from the prior system in order to learn the dynamics of the new system? As another example, if there is abundant data available from a simulated (but imperfect) model of the true system, how should one weight that data compared to the real data from the system? Our analysis provides insights into the answers to these questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源