论文标题
在KAC球体上重新制定措施的混乱
Chaos for rescaled measures on Kac's sphere
论文作者
论文摘要
在本文中,我们研究了一种相对新颖的方法,它构建了KAC球体支持的混乱序列,该序列是作为$ n $ i.i.d.的向量定律获得的。变量重新缩放后具有单位平均能量。我们表明,随着$ n $的增加,就wasserstein距离而言,此序列是混乱的,从恩格斯坦距离,$ l^1 $,从熵意义上讲以及在渔民的信息意义上。对于许多结果,我们以$ n $提供明确的多项式订单率。在此过程中,我们通过放松订单$ 6 $ $ 6 $ $ 4+ε$的有限矩要求来改善Haurey和Mischler的定量熵混乱。
In this article we study a relatively novel way of constructing chaotic sequences of probability measures supported on Kac's sphere, which are obtained as the law of a vector of $N$ i.i.d. variables after it is rescaled to have unit average energy. We show that, as $N$ increases, this sequence is chaotic in the sense of Kac, with respect to the Wasserstein distance, in $L^1$, in the entropic sense, and in the Fisher information sense. For many of these results, we provide explicit rates of polynomial order in $N$. In the process, we improve a quantitative entropic chaos result of Haurey and Mischler by relaxing the finite moment requirement on the densities from order $6$ to $4+ε$.