论文标题

参数模型嵌入

Parametric Model Embedding

论文作者

Serani, Andrea, Diez, Matteo

论文摘要

最近,基于无监督的机器学习方法开发了降低形状优化设计空间维度的方法。这些方法提供了降低设计空间的维数表示,能够维持一定程度的原始设计可变性。然而,他们通常不允许直接使用原始参数化方法,这代表了其在工业领域中广泛应用的限制,在该领域,设计参数通常与建立良好的参数模型有关,例如CAD(计算机辅助设计)型号。这项工作介绍了如何将参数模型的原始参数嵌入设计空间的降低性表示中。该方法从新引入的广义特征空间的定义中利用,作为概念证明,用于重新聚集2D曲线和3D自由形式变形设计空间,以及随之而来的模拟驱动驱动驱动设计优化问题的解决方案,分别是镇定水上驱动器和镇静水中的海军驱逐舰。

Methodologies for reducing the design-space dimensionality in shape optimization have been recently developed based on unsupervised machine learning methods. These methods provide reduced dimensionality representations of the design space, capable of maintaining a certain degree of the original design variability. Nevertheless, they usually do not allow to use directly the original parameterization method, representing a limitation to their widespread application in the industrial field, where the design parameters often pertain to well-established parametric models, e.g. CAD (computer-aided design) models. This work presents how to embed the parametric-model original parameters in a reduced-dimensionality representation of the design space. The method, which takes advantage from the definition of a newly-introduced generalized feature space, is demonstrated, as a proof of concept, for the reparameterization of 2D Bezier curves and 3D free-form deformation design spaces and the consequent solution of simulation-driven design optimization problems of a subsonic airfoil and a naval destroyer in calm water, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源